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ABSTRACT

j

Self-diffusion coefficients that describe cross-flow migration of nonBrownian drops in a dilute sheared emulsion

were obtained by trajectory calculations. A boundary integral formulation was used to describe pairwise

interactions between deformable drops; interactions between undeformed drops were described with mobility

functions for spherical drops. The results indicate that drops have large anisotropic self-diffusivities which

depend strongly on the drop viscosity and modestly on the shear-rate. Pairwise interactions between drops

in shear-flow do not appreciably promote drop breakup.

INTRODUCTION

Shear-induced self-diffusion of nonBrownian drops in emulsions is important because it facilitates mixing. In

the production of specialized polymer blends, macroscopic properties such as the mechanical strength rely

on effective mixing of the emulsified melt to produce a uniform microstructure. In the absence of interracial

tension, the drop size in an efficient mixing device will continuously decrease until Brownian motion can

effectively homogenize the fine droplets throughout the continuous phase.

However, interracial tension places a lower bound on the drop size that can be obtained by mixing.

For drops in shear-flow, significant deformation and breakup generally occur when the capillary number,

Ca - tt'Ya is O(1), where _ is the imposed shear-rate, a is the undeformed drop radius, p is the continuous-
a

phase viscosity, and a is the interracial tension. The numerical value of the critical capillary number depends

on the dispersed- to continuous-phase viscosity ratio, A, and the dispersed-phase volume fraction, ¢. For

isolated drops with 0 < A < 4, the criterion Ca = O(1) provides a reasonable estimate of the drop size

produced by a given shear-rate (Hineh & Acrivos 1980; Grace 1982). The effect of drop interactions on

the critical capillary number has not been studied thus the effect of volume fraction is unknown. Simple

scaling arguments indicate that typical mixing operations generate nonBrownian deformable drops; thus,

self-diffusion of deformable drops is an important mixing mechanism in most emulsification processes.

The O(a) displacements and O(X/a) relative velocities between interacting particles or drops produce
self-diffusivities that are O('_a2). Shear-induced self-diffusion of rigid spherical particles in has been exper-

imentally observed (Eckstein et al. 1977; Leighton & Acrivos 1987) and numerically simulated (Brady &

Bossis 1987). Pairwise interactions do not induce a net cross-flow displacement of smooth spheres; cross-flow

self-diffusion results from multi-particle interactions. Wang et al. (1996) calculated the O(¢_'_a 2) cross-flow

self-diffusivity of smooth spheres in a sheared dilute suspension. Net cross-flow displacements can result

from pairwise interactions between nonspherical particles or drops. Thus, nonspherical particles and drops

have larger O(¢')a 2) self-diffusivities in dilute suspensions that result from pair interactions, da Cunha &

Hinch (1996) computed the self-diffusivity of rough spheres in a dilute suspension but there have been no

studies on the self-diffusion of drops.

The aim of this article is to compute cross-flow self-diffusion coefficients of nonBrownian deformable

drops in a sheared dilute emulsion. The effects of the capillary number and viscosity ratio were the focus
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of our study. Neutrally buoyant drops, a monodisperse drop size distribution, and low Reynolds number

conditions are assumed. Marangoni stresses on the drop interfaces that result from surfactant concentration

gradients are neglected. The numerical procedure and numerical results are presented in the next two

sections. Concluding remarks are made in the final section.

CALCULATION PROCEDURE

The nonsingular bound-

ary integral formulation

developed by Loewenberg

& Hinch (1996) was used

to compute the interac-

tions and trajectories of

deformable drops (Ca >

0) in shear-flow. For

the limiting case Ca --,

0, spherical drop trajec-
tories were obtained from

Zinchenko (1983, 1984).

Figure 1: Schematic of

relative trajectory be-

tween pair of deformable

interacting drops in shear
flOW.
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Self-diffusivities-- The self-diffusion tensor is defined as half the rate-of-change of the random walk variance:

D = liE 1 _t (t-_2 AA) , (1)

where the cross-flow random walk displacement, A has zero mean. The cross-flow displacement, A =

(A2, A3), is defined in fig. 1. For given values of Ca and A, the cross-flow displacement of a drop resulting

from its pairwise interaction with another identical drop depends on the initial offset of the drop trajectories,

(x °, x°), at large separations in the flow direction, xl. Only pairwise interactions between identical drops are
considered on the assumption that the emulsion is dilute and monodisperse.

The rate of interactions that result in a particular cross-flow displacement, A(x °, x0; Ca, A), is

n'_ Ix01 dx ° dx °, where n is the number density of drops: ¢ = -_a3n. By definition (1), the dimensionless

self-diffusion coefficient for drops in a dilute emulsion is (da Cunha & Hinch 1996):

fa(Ca, A) - Da 3 f0°_0c¢ 2 0 dxOdx o (2)¢-_a 2 - 2r A_x2 '

where a = 2 or 3 for cross-flow self-diffusion in the velocity gradient or the vorticity direction (cf. fig. 1).

The result exploits the four-fold symmetry of integration in the x ° - x ° plane.

For deformable drops, the double integral of formula (2) was evaluated with about 1% error using 32

integrand evaluations (trajectory calculations) on a truncated square domain and extrapolating the result

to infinity using the far-field form of the pair interaction (Kim & Karrila 1991). The calculations presented

herein were obtained with a 4 x 4 domain. A comparison to the values obtained with an 8 x 8 domain

indicated that the truncation error is 1-2%.
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Figure 2: Relative trajectory of two interacting drops for Ca = 0.3, A = 1; initially, one drop centered at

origin and other drop at (-10,0.5,0). a) Cross-flow separation (velocity gradient direction) versus time;

results obtained obtained using N = 180 (dotted curve), 320 (dashed-dotted curve), 720 (dashed curve), and

1280 (solid curve) boundary elements, b) Cross-flow displacement versus reciprocal number of boundary

dements, 1/N.

_ q 15'1/3Unstabilized hydrodynamically interacting spherical drops will coalesce for R < "-_12 , where R =

¢(x°) 2 + (xj°) 2 is the magnitude of the initial trajectory offset and En is the "collision efficiency" (Wang et

al. 1994). Herein, spherical drops were stabilized against coalescence by supplementing the hydrodynamic

interaction with a singular, infintesimally short-range repulsion (Zinchenko 1984). For spherical drops with

_ 9_ '1/3short-range repulsion, A(x °,x °) is nonzero only within the circular domain R < "_12 - The mobility

functions were tabulated for improved computational speed. For spherical drops formula (2) was evaluated

with about 0.1% error using 1225 trajectory calculations.

Deformable drops can also be stabilized with a short-range repulsive interaction (Loewenberg & Hinch

1996) however, this was implemented only for 2 < £ < 5 and for A < 0.1 on the most closely-spaced

trajectories (R < 1). Very small surface separations occur under these conditions. For £ = 1, we confirmed

that the short-range repulsion had a negligible effect on the trajectories of deformable drops.

Cross-flow trajectory offsets were obtained with one drop initially centered at the origin and the second

x ° x °_ Trajectory integration was continued until the second drop passedat a downstream location, (-X1, 2, 31"

the plane xl = +X1. For deformable drops, the initial drop shapes corresponded to the stationary shapes of

isolated drops under the same flow condtions. The error induced by trajectory truncation is O(X{ 3) (Kim

& Karrila 1991). We used X1 = 8 for deformable drops and X1 = 20 for spherical drops. Based on a limited
number of calculations with larger values of X1, we estimate that trajectory truncation error is about 1%

for deformable drops and about 0.1% for spherical drops.

Computation Time and Numerical Convergence-- For deformable drops with Ca = 0.3 and A = 1, self-

diffusivities were obtained in 2 hours on a workstation using N = 720 boundary elements. The calculations

are 3 4 times slower for A -¢ 1 because an iterative solution of the integral equation is required.

The results depicted in fig. 2 demonstrate numerical convergence of the boundary integral calculations

for trajectories of deformable drops. Fig. 2b demonstrates that the total discretization error resulting from
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Figure 3: Sequences (1-4) showing the interaction between two drops in shear flow with Ca = 0.4, )_ = 1.

Initially, one drop centered at origin and other drop at (-10, 0.5, 0).

the curvature calculation, surface integration, and trajectory integration is O(N-1). Herein, self-diffusivities

were computed with N = 720 thus, discretization errors are about 2% which is comparable to the remaining
sources of error discussed above.

Self-diffusivities for spherical drops require less than a minute of CPU time and are accurate to about
0.1%.

NUMERICAL RESULTS

Drop Breakup--An example of a pair interaction between deformable drops in shear-flow is depicted in

fig. 3. The critical capillary number for breakup of an isolated drop in shear flow is lowest for A _ 1; for A = 1,

Ca __ 0.41 is critical (Rallison 1981). The trajectory depicted in fig. 3 demonstrates that even for capillary

numbers very close to critical, strong pairwise interactions do not result in drop breakup. Other calculations

with )_ # 1 also showed no tendency for interaction-enhanced breakup. Apparently pairwise drop interactions

do not induce significantly subcritical capillary number breakup. Thus, the critical capillary number is a
weak function of volume fraction at least in dilute emulsions.

In part, breakup is averted because of the reduced cross-section for interaction between highly deformed

drops. Breakup requires enhanced drop elongation but a detailed inspection of the numerical results revealed

that the extra deformation induced by a pairwise interaction tends to deform drops in the xa-direction. De-

formable drops can easily squeeze past each other which tends to prevent breakup.

Self-diffusivities-- Figs. 4 and 5 depict self-diffusivities as functions of shear-rate (capillary number) and

viscosity ratio. Self-diffusion is only a moderate function of capillary number; figs. 4 and 5 show that self-

diffusivities vary by a factor of about 2 as the capillary number is varied over a wide range. By contrast,

self-diffusivities are a strong function of viscosity ratio.

Anisotropic self-diffusion results from the bias of trajectory displacements in the velocity gradient direc-

tion. Self-diffusion in the velocity gradient direction, f2 is nmch larger than self-diffusion in the vorticity

direction, fa. For stabilized spherical bubbles (A = 0), it can be shown that the ratio f2/f3 is exactly 2. For

deformable bubbles with Ca = 0.3, f2/fa -_ 6. Fig. 5 indicates that anisotropy increases with viscosity ratio

f2/f3 > 20 for A _> 10.
For A = 10, f2 and f3 are approximately equal to the self-diffusivities predicted for spherical particles

with 3% roughness (da Cunha & Hinch 1996). For A < 10, drop diffusivities are considerably larger than

the values for rough spherical particles.

As expected, self-diffusivities vanish for large A because D = 0(¢ 2) for smooth spheres (Wang et al.

1996). The results depicted in fig. 5 indicate that self-diffusion becomes insensitive to capillary number
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Figure 4: Self-diffusion coefficients as a function of

capillary number for A = 1; solid curve: diffusion

parallel to velocity gradient, ]'2; dashed curve: dif-

fusion parallel to vorticity, f3.

0.07

0.06'

0.05

0.04:

0.03

0.02:

0.01'

0.00
..... I ........ | . , .. _ !

/

0.01 0.1 1 10 20

Figure 5: Self-diffusion coefficients as a function of

viscosity ratio for Ca = 0.3 (A) and Ca = 0 (x);

solid curves: diffusion parallel to velocity gradient,

f2; dashed curves: diffusion parallel to vorticity, f3.

for large viscosity ratios. Closer inspection of the numerical results indicates that self-diffusivities vanish

exponentially for A >> 1.

Fig. 4 shows that f2 exhibits a maximum which may result from a balance between the increase of

far-field (R > 2) trajectory displacements with drop deformation and the decrease of near-field trajectory

displacements with reduced drop cross-section. Under the same conditions, f3 is essentially independent of

Ca. Fig. 4 shows a smooth transition from results for Ca > 0.1 to the results for Ca = 0 that were obtained

using spherical drops stabilized against coalescence by a short-range singular repulsion.

CONCLUSIONS

Cross-flow self-diffusivities have been computed for drops in a dilute emulsion. The results show that self-

diffusivities depend strongly on the viscosity ratio and moderately on the capillary number. Self-diffusivities

are much larger in the velocity gradient direction than in the vorticity direction. Drops have large self-

diffusivities compared to rigid spherical particles.

The interactions between deformable drops were described with boundary intergral calculations; O(1/N)

numerical convergence was obtained, where N is the number of boundary elements. Mobility functions for

spherical drops were used to describe the interactions between drops in the zero deformation limit.
The calculations also indicate that drop interactions do not induce significantly subcritical capillary

number breakup. In dilute emulsions, the critical capillary number is a weak function of volume fraction

because deformable drops can easily squeeze past each other.
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